Computing Potentials of Mean Force in GROMACS

Dissociation of an Amyloid Protofibril

Justin A. Lemkul
September 13, 2013

jalemkul@outerbanks.umaryland.edu
Objectives

• Understand the basic concepts of the pull code

• Learn the protocol for calculating PMF for the dissociation of a protein complex

• Understand the analysis methods associated with PMF
Background

- GROMACS manual, section 6.4
- PMF theory
- WHAM algorithm
- GROMACS g_wham
- Today’s example
Background

- Virtual particle attached to some molecule in the system via a “spring” (harmonic potential)

\[F = -k(x - x_0) \]

- Virtual particle moves, extending the spring and increasing the force

- Pulled molecule responds to this applied force
Background

- To calculate PMF, we define a reaction coordinate, ξ
 - A path along which the system evolves
 - Can be:
 • A direction (vector)
 • An angle (dihedral rotation)
 • Other abstract things

- Generate a series of configurations along ξ, conduct individual simulations at chosen intervals
Background

Harmonic potential allows for oscillation within each window, overlap with neighboring sampling windows.

References

Theory
Background

Sampling window \{ \}

\begin{align*}
x_1 &\rightarrow E_1 \\
x_2 &\rightarrow E_2 \\
x_3 &\rightarrow E_3
\end{align*}

\[\Delta G \]

References
Theory
Tutorial Exercise

- Steered MD (SMD) for path-dependent quantities
- Umbrella sampling (US) for ΔG calculation

Tutorial Exercise

• Tutorial files provided

 pmf_tutorial/conf
 /mdp
 /pull_data
 /scripts
 /tpr

 Starting configurations
 Run parameters
 Sample data
 Accessory scripts
 Run input files

• Protocol online

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/umbrella/index.html
Tutorial Exercise

• Constructing the box
 – Caveats of using pull_geometry = distance
Tutorial Exercise

• Notes on pull geometries
 – distance (uses pull_dim)
 • Simple to use, intuitive
 – direction (pull_vec)
 • Also very simple, could be used here
 – direction_periodic (pull_vec)
 • Eliminates PBC issue, but problems with NPT
 – position (pull_vec)
 • Could be used here, more complex
 – cylinder (pull_vec)
 • Useful for membranes and surfaces
Tutorial Exercise

• Generate configurations
 – Starting coordinates for each window
 – Can be done manually
 • editconf or trjconv to place molecules
 – Use pull code (steered MD)
 • Can provide path-specific insight

• Determine adequate spacing for windows
• Equilibrate within each window
Tutorial Exercise

• Pull rates and force constants during SMD
 – No hard and fast rules, sorry!
 – Both pull_k1 and pull_rate1 affect outcome
 – Try multiple values

• Determine source of any artifacts
Tutorial Exercise

• Pull rates and force constants during US
 – Pull rate is zero
 • Not producing net displacement
 – pull_k1 determines width of windows
 • How far molecule can deviate from center of window
 •Extent of overlap between neighboring windows

Too strong

Too weak?

Perfect!
Tutorial Exercise

• Main outcome of umbrella sampling is the PMF
 – WHAM algorithm via \texttt{g_wham} in GROMACS
 • Calculates PMF, produces profile
 • Outputs histograms to show sampling
 • Conducts error analysis and calculates autocorrelations
 • Convenient symmetry and shifting operations
 – Options \texttt{-sym/-cycl} and \texttt{-zprof0}
Tutorial Exercise

• Input files for \texttt{g_wham}
 – \texttt{tpr-files.dat}
 • List of .tpr file names
 – \texttt{pullf_files.dat/pullx_files.dat}
 • List of pullf.xvg or pullx.xvg file names
Tutorial Exercise

- Output files
 - profile.xvg (from –o option)
 - PMF profile
 - bsResult.xvg (from –bsres option)
 - Average PMF profile, with σ from boostrapping
 - bsProfs.xvg (from –bsprof option)
 - All PMF profiles from bootstrapping
 - histo.xvg (from –hist option)
 - Sampling histograms
 - Plot with xmgrace -nxy
Tutorial Exercise

g_wham -it tpr/tpr-files.dat -if pull_data/pullf-files.dat -o profile.xvg -hist histo.xvg -bsprof bsProfs.xvg -bsres bsResult.xvg -temp 310 -nBootstrap 200

Bootstrap Profiles

Average PMF Profile